Simultaneous Best Approximations with Two Polynomials

David A. Sprecher
Department of Mathematics, University of California, Santa Barbara, California 93106

1. The Problem

The following problem was posed by T. J. Rivlin [1]: Let \mathscr{C} stand for the space of continuous real valued functions on the interval $[0,1]$; let $E_{j}(f)$ represent the Chebyshev degree of approximation to f by algebraic polynomials of degree j. Characterize the n-tuples $\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ of algebraic polynomials p_{j}, where $\operatorname{deg} p_{j}=j$, which have the property that there is a function $f \in \mathscr{C}$ such that

$$
\begin{equation*}
E_{j}(f)=\left\|f-p_{j}\right\| \tag{1}
\end{equation*}
$$

for $j=0,1,2, \ldots, n-1$, the norm on the right side being the uniform norm.
In this note we prove the following related
Theorem. Given polynomials p_{m} and $p_{n}, 0 \leqslant m<n$, there is a function $f \in \mathscr{C}$ which satisfies (1) for the integers $j=m$ and $j=n$ if and only if the polynomial $p_{n}-p_{m}$ changes sign at least $m+1$ times in $[0,1]$.

The linear case $m=0, n=1$ was proved by Deutsch, Morris and Singer in [2]. Our only excuse for reproving this case is that our proof is very short. The necessity of the condition in the theorem was stated and proved by Rivlin [1].

2. Proof of the Case $m=0, n=1$

To verify the sufficiency of the condition let us consider polynomials $p_{0}(x)=c$ and $p_{1}(x)=a x+b(a \neq 0)$ such that $a t+b=c$ for some $t, 0<t<1$. Then the equality

$$
\frac{1}{2}\left[p_{1}(t-\delta)+p_{1}(t+\delta)\right]=c
$$

holds for each number δ, and we fix a δ such that $0<\delta<\min \{t, 1-t\}$. Let us suppose that $a>0$ and put

$$
\alpha=\underset{384}{\max }\{|a+b-c|,|b-c|\} .
$$

If $f \in \mathscr{C}$ is the piecewise linear function with vertices

$$
(0, c-\alpha) \quad(t-\delta, c-\alpha) \quad(t+\delta, c+\alpha) \quad\left(1, p_{1}(t+\delta)\right)
$$

(see Fig. 1), then (1) is easily seen to hold for $j=0,1$. The desired f in case $a<0$ is obtained from the above construction by the substitution $x=1-y$.

The necessity of the asserted sign change is demonstrated as follows: let a function $f \in \mathscr{C}$ and polynomials p_{0}, p_{1} satisfy (1). If we put

$$
g_{j}=f-p_{j} \quad(j=0,1)
$$

then it is an elementary observation that

$$
\begin{equation*}
\max g_{j}+\min g_{j}=0 \quad(j=0,1) \tag{2}
\end{equation*}
$$

Fig. 1.
where the maximum and minimum are taken over $[0,1]$. If, say, $g_{1}>g_{2}$ on $(0,1)$, then $\max g_{1}>\max g_{2}$ and $\min g_{1}>\min g_{2}$, so that

$$
\max g_{1}+\min g_{1}>\max g_{2}+\min g_{2}
$$

But this implies that (2) fails to be true for g_{1} or g_{2}. Clearly, one arrives at the same conclusion if $g_{2}>g_{1}$ on $(0,1)$ and the necessity of the sign change is hereby proved.

3. Proof of the Case $m=0, n>1$

Let $p_{n}\left(x_{0}\right)=c$ for some point $0<x_{0}<1$. Then there are points $0<x_{1}<$ $x_{0}<x_{2}<1$ such that

$$
\frac{1}{2}\left[p_{n}\left(x_{1}\right)+p_{n}\left(x_{2}\right)\right]=c
$$

we may assume without loss of generality that $p_{n}\left(x_{2}\right)>c$. We introduce the polynomials

$$
\begin{align*}
& p_{n}^{-}(x)=p_{n}(x)-\left[p_{n}\left(x_{1}\right)+\left\|p_{n}\right\|-c\right], \\
& p_{n}^{+}(x)=p_{n}(x)+\left[p_{n}\left(x_{1}\right)+\left\|p_{n}\right\|-c\right], \tag{3}
\end{align*}
$$

satisfying

$$
\frac{1}{2}\left[p_{n}^{-}(x)+p_{n}^{+}(x)\right]=p_{n}(x)
$$

Let

$$
k= \begin{cases}n+3 & \text { if } n \text { is odd } \\ n+4 & \text { if } n \text { is even }\end{cases}
$$

and fix points

$$
x_{1}=u_{1}<u_{2}<u_{2}<\ldots<u_{k-1}<u_{k}=x_{2}
$$

(see Fig. 2). The function

$$
g(x)= \begin{cases}\frac{u_{2 j}-x}{u_{2 j}-u_{2 j-1}} p_{n}-(x)+\frac{x-u_{2 j-1}}{u_{2 j}-u_{2 j-1}} p_{n}^{+}(x) \tag{4}\\ & \left(u_{2 j-1} \leqslant x \leqslant u_{2 j}, j=1,2, \ldots, \frac{k}{2}\right) \\ \frac{u_{2 j+1}-x}{u_{2 j+1}-u_{2 j}} p_{n}^{+}(x)+\frac{x-u_{2 j}}{u_{2 j+1}-u_{2 j}} p_{n}^{-}(x) \\ & \left(u_{2 j} \leqslant x \leqslant u_{2 j+1}, j=1,2, \ldots, \frac{k}{2}-1\right)\end{cases}
$$

which is defined and continuous on the interval $\left[x_{1}, x_{2}\right]$, is best approximated in the class of all n-degree algebraic polynomials by $p_{n}(x)$. This follows from the facts that

$$
\begin{array}{r}
p_{n}\left(u_{2 j-1}\right)-g\left(u_{2 j-1}\right)=p_{n}\left(u_{2 j-1}\right)-p_{n}{ }^{-}\left(u_{2 j-1}\right)=p_{n}\left(x_{1}\right)+\left\|p_{n}\right\|-c \\
\quad\left(j=1,2, \ldots, \frac{k}{2}\right), \\
p_{n}\left(u_{2 j}\right)-g\left(u_{2 j}\right)=p_{n}\left(u_{2 j}\right)-p_{n}^{+}\left(u_{2 j}\right)=-\left[p_{n}\left(x_{1}\right)+\left\|p_{n}\right\|-c\right] \\
\left(j=1,2, \ldots, \frac{k}{2}-1\right),
\end{array}
$$

and

$$
\left\|g-p_{n}\right\|=p_{n}\left(x_{1}\right)+\left\|p_{n}\right\|-c
$$

as shown by a simple calculation. We let

$$
f(x)= \begin{cases}\frac{x_{1}-x}{x_{1}} p_{n}(x)+\frac{x}{x_{1}} p_{n}^{-(x)} & \left(0 \leqslant x \leqslant x_{1}\right) \\ g(x) & \left(x_{1} \leqslant x \leqslant x_{2}\right) \\ \frac{1-x}{1-x_{2}} p_{n}^{+}(x)+\frac{x-x_{2}}{1-x_{2}} p_{n}(x) & \left(x_{2} \leqslant x \leqslant 1\right)\end{cases}
$$

Then

$$
\left\|f-p_{n}\right\|=\left\|g-p_{n}\right\|
$$

so that $E_{n}(f)=\left\|f-p_{n}\right\|$. To see that $E_{0}(t)=\|f-c\|$ we observe from (3) that

$$
\begin{aligned}
& f\left(x_{1}\right)=p_{n}^{-}\left(x_{1}\right)=c-\left\|p_{n}\right\|_{,} \\
& f\left(x_{2}\right)=p_{n}^{+}\left(x_{2}\right)=c+\left\|p_{n}\right\|_{9}
\end{aligned}
$$

and a routine calculation shows that

$$
-\left\|p_{n}\right\| \leqslant f(x)-c \leqslant\left\|p_{n}\right\| \quad(0 \leqslant x \leqslant 1)
$$

Necessity is proved just as in the previous case.

Fig. 2.

4. Proof of the Case $m>0, n>1$

Consider arbitrary polynomials p_{m} and p_{n}, with $1 \leqslant m<n$, such that $p_{n}-p_{m}$ changes sign at least $m+1$ times in $[0,1]$. Then there are points

$$
0<t_{1}<t_{2}<\ldots<t_{m+1}<1
$$

such that $p_{m}\left(t_{j}\right)=p_{n}\left(t_{j}\right)$ for $j=1,2, \ldots, m+1$. Letting $t_{0}=0$ and $t_{m+2}=1$, we put

$$
\begin{aligned}
\alpha_{j} & =\max _{t j \leqslant x \leqslant t+1}\left|p_{m}(x)-p_{n}(x)\right|, \\
\alpha & =\frac{1}{2} \min \left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m+1}\right\}, \\
\beta & =\max \left\{\left\|p_{m}\right\|,\left\|p_{n}\right\|\right\} .
\end{aligned}
$$

Suppose $p_{n}(x) \geqslant p_{m}(x)$ for $t_{1} \leqslant x \leqslant t_{2}$ and consider the polynomials

$$
\begin{aligned}
& p_{n}^{-}(x)=p_{n}(x)-\beta, \\
& p_{n}^{+}(x)=p_{n}(x)+\beta, \\
& p_{m}^{-}(x)=p_{m}(x)-\alpha-\beta, \\
& p_{m}^{+}(x)=p_{m}(x)+\alpha+\beta .
\end{aligned}
$$

Then each of the polynomials $p_{n}{ }^{-}-p_{m}{ }^{-}$and $p_{n}{ }^{+}-p_{m}{ }^{+}$also changes sign at least $m+1$ times in $[0,1]$. Thus, there are $m+2$ points x_{j},

$$
x_{j}<t_{j}<x_{j+1}, \quad j=1,2, \ldots, m+1
$$

such that

$$
\begin{equation*}
p_{m}^{-}\left(x_{2 k-1}\right)=p_{n}^{-}\left(x_{2 k-1}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{m}^{+}\left(x_{2 k}\right)=p_{n}^{+}\left(x_{2 k}\right) \tag{6}
\end{equation*}
$$

for all admitted values of k. The point x_{2} can be so chosen that

$$
p_{m}^{-}(x) \leqslant p_{n}^{-}(x)<p_{n}^{+}(x) \leqslant p^{+}(x), \quad\left(x_{1} \leqslant x \leqslant x_{2}\right)
$$

On the interval $\left[x_{1}, x_{2}\right]$ the situation is now similar to that in Case 3. Thus, let g be defined as in (4). Then p_{n} is its best approximation in the class of algebraic polynomials of degree n.

Put for each $x \in[0,1]$,

$$
\begin{aligned}
& q^{-}(x)=\max \left\{p_{m}^{-}(x), p_{n}^{-}(x)\right\} \\
& q^{+}(x)=\min \left\{p_{m}^{+}(x), p_{n}^{+}(x)\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
q\left(x_{2 k-1}\right) & =p_{m}^{-}\left(x_{2 k-1}\right)=p_{n}^{-}\left(x_{2 k-1}\right) \\
q^{+}\left(x_{2 k}\right) & =p_{m}^{+}\left(x_{2 k}\right)=p_{n}^{+}\left(x_{2 k}\right)
\end{aligned}
$$

(see (5) and (6)). In a manner similar to that in Case 3 we construct a function $f \in \mathscr{C}$ such that

$$
\begin{gather*}
q^{-}(x) \leqslant f(x) \leqslant q^{+}(x), \tag{7}\\
f(x)=g(x) \quad \text { for } x_{1} \leqslant x \leqslant x_{2}, \tag{8}\\
f\left(x_{2 k-1}\right)=q^{-}\left(x_{2 k-1}\right), \tag{9}\\
f\left(x_{2 k}\right)=q^{+}\left(x_{2 k} .\right.
\end{gather*}
$$

The conditions (7) and (8) guarantee that p_{n} is also the best approximation of f by algebraic polynomials of degree n. Conditions (7) and (9) show that the best approximation to f from among the algebraic polynomials of degree m is p_{m} : the calculations justifying this conclusion are routine and therefore omitted here.

For the necessity of the asserted sign changes we refer this time to Rivlin's proof in [1].

References

1. T. J. Rivlin in Proc. Coll. on Abstract Spaces and Approximation (Oberwolfach, July 1968), Birkhäuser Verlag (to appear.)
2. F. Deutsch, P. D. Morris and I. Singer, On a problem of T. J. Rivlin in approximation theory. J. Approx. Theory (to appear).
